
MECHANIZING WEBASSEMBLY
PROPOSALS

by

Jacob Mischka

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

August 2020

ABSTRACT

MECHANIZING WEBASSEMBLY PROPOSALS
by

Jacob Mischka

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor John Boyland

WebAssembly is a modern low-level programming language designed to

provide high performance and security. To enable these goals, the language

specifies a relatively small number of low-level types, instructions, and lan-

guage constructs. The language is proven to be sound with respect to its

types and execution, and a separate mechanized formalization of the specifi-

cation and type soundness proofs confirms this. As an emerging technology,

the language is continuously being developed, with modifications being pro-

posed and discussed in the open and on a frequent basis.

ii

In order to ensure the soundness properties exhibited by the original core

language are maintained as WebAssembly evolves, these proposals should

too be mechanized and verified to be sound. This work extends the existing

Isabelle mechanization to include three such proposals which add additional

features to the language, and shows that the language maintains its soundness

properties with their inclusion.

iii

© Copyright by Jacob Mischka, 2020
All Rights Reserved

iii

TABLE OF CONTENTS

Abstract ii

1 Introduction 1

2 WebAssembly 3

2.1 Non-Web Embeddings . 6

2.2 Past Experiments . 7

2.3 Evolving WebAssembly . 10

3 Proof Mechanization 16

4 Soundness 19

5 Incremental Soundness 24

5.1 Non-trapping Float-to-Int Conversions 26

5.2 Sign Extension Operators . 28

5.3 Tail Call . 31

iv

6 Related Work 36

7 Future Work 39

8 Conclusion 40

Bibliography 54

v

ACKNOWLEDGMENTS

Certainly, this work would not be possible without the foundational work

by Conrad Watt. His work continues to be an inspiration, and his kind words

of support about my project instills me with pride to this day.

I would also like to of course thank my adviser Dr. John Boyland, a

phenomenal professor who inspired me to pursue proof mechanization and

the study of programming language design in the first place, for his guidance,

support, and needed nudging that enabled me to complete this project.

I would also like to thank my close friend Alison Saia for always supporting

me and agreeing to proofread this work.

Finally, I must thank my family, my mother Deborah and sister Justine,

for their everlasting and immense support of me and everything I do. I would

be nowhere without them.

vi

1 Introduction

The modern Web is based on three primary integrated components: docu-

ment markup using HTML, styling using CSS, and interactivity using the

JavaScript programming language. As the usage of the Web as a universal

platform continued to expand, authors of software projects wished to en-

able their software to be run on the Web but various factors, some technical

and others more superficial, prompted the demand of source languages be-

sides JavaScript. Often, this was a lower-level language used for performance

reasons, a stricter language for safety reasons, or another language with sup-

port for existing libraries or large projects that cannot easily be ported to

JavaScript. To enable this, it became common for other programming lan-

guages to support JavaScript as a compile target, allowing developers to write

software to be run on the Web without having to write JavaScript directly.

Some of these source languages were designed intentionally with this goal

in mind, such as CoffeeScript[7], while others such as C or C++ had the ca-

pability added by external alternative compilers. The Emscripten[37] project

compiles LLVM[26] intermediate representation software, which can be gen-

erated from C/C++, to JavaScript. The resulting compiled program utilizes

a subset of JavaScript’s available syntax and operations, called asm.js, which

1

is heavily optimized by JavaScript interpreters and just-in-time compilers,

as well as the underlying hardware[31]. While this clever usage of the exist-

ing platform provided performance improvements and developer satisfaction,

JavaScript was not designed as a low-level, performant compile target, and

the resulting benefits of asm.js relied heavily on JavaScript runtime imple-

mentations. An attempt to define a formal specification and standardize the

platform began in 2013, but was abandoned shortly thereafter in 2014[4]. The

abandonment of asm.js’s formalization coincided with discussions amongst its

project leaders for defining a new “proper” bytecode solution for native code

on the Web, followed shortly thereafter by initial discussions between browser

developers and JavaScript runtime implementers about “WebAsm”. As this

project evolved and was fleshed out, the WebAssembly project began and

was announced publicly on June 17, 2015[73].

2

2 WebAssembly

WebAssembly (Wasm) is a “safe, portable, low-level code format designed

for efficient execution and compact representation”[64, p. 1]. The language

is defined as a virtual instruction set, encapsulating the semantics of the

program in a format that is independent of the underlying system on which

the program runs. WebAssembly supports two official formats: a readable

text format and a more efficient binary format[64]; both formats are based

directly on the language’s abstract syntax. The binary format is a space-

efficient mapping of syntax expressions into a sequence of raw bytes, with

each distinct sequence of bytes representing exactly one possible combina-

tion of syntax elements when decoded. The text format is largely similar

to the grammar of the language’s abstract syntax formatted into symbolic

expressions (S-expressions).

WebAssembly provides safety guarantees by fully encapsulating logic and

execution at a low level. Values consist of only 32- and 64-bit variants of

integers and IEEE 754 floating point numbers[64, p. 2–3]. The operational

semantics of the language are primarily that of a stack machine, wherein

operations are performed by removing operands from a last-in-first-out stack

of values and pushing the operation’s result onto the stack afterward. Strictly

3

speaking this is not completely true, as the language’s inclusion of local

variables allows circumvention of completely stack-based execution[17]; this

has led to challenges for implementers of Lightbeam, an optimizing streaming

WebAssembly compiler[16]. Memory operations are fully sandboxed by the

WebAssembly execution environment. WebAssembly memories are single

lists of raw bytes[64, p. 16]. Each WebAssembly module can include a single

memory vector, and any computations the module performs that require

memory utilizes this list of bytes; no direct access of the underlying system’s

physical or virtual memory is permitted.

WebAssembly programs are executed by virtual machines, which pro-

vide an abstraction layer between the program and the underlying system.

The connection between the host environment which runs the virtual ma-

chine (embedding environment) and the virtual machine executing the Web-

Assembly program is called an embedder. In order to interact with the host

environment, WebAssembly embedders may expose functionality via appli-

cation programming interfaces (APIs): defined functions that WebAssembly

can use to interact with the environment. With the Web as the primary

embedding environment, Web embeddings provide a defined JavaScript API

that allows interaction with web pages.

Embedding environments are free to expose any level of functionality to

4

WebAssembly, enabled by the concept of host functions provided by the en-

vironment that can be invoked by WebAssembly. Host functions can receive

and return values like regular functions, and they can also modify the store,

the abstract model of the program’s global state[64, p. 78]. WebAssembly

itself provides no guarantees about the determinism of host functions—as far

as WebAssembly is concerned, such functions can be assumed to succeed or

fail arbitrarily at the whims of the embedding environment. If the function

call succeeds, a compliant embedding environment is required to correctly

remove the expected number of arguments from the stack, and return the

declared number of values. If the store is modified, the resulting store must

be an extension of the previous store, with only mutable contents modified

and no contents removed, and its contents must be well-typed. Examples

of host functions include functions for reading and writing system files or

performing network operations in a non-Web environment.

WebAssembly instructions are grouped into several categories: numeric

instructions which perform various mathematical operations on specific nu-

meric value types, parametric instructions which can operate on any value

type, variable instructions for manipulating local or global variables, mem-

ory instructions for manipulating the linear memory, and control instructions

5

for manipulating the program’s control flow. Notable for a lower-level lan-

guage, WebAssembly’s control flow is fully structured: there is no rudimen-

tary goto-like construct, and the flow of the program is manipulated only by

higher-level instructions such as blocks and loops, if statements, and branch

instructions. In addition to the basic instructions that are available to pro-

grammers, the specification also defines several administrative instructions

which are used to express the reduction of various basic instructions. Ad-

ministrative instructions cannot be called directly, but are internally used by

the virtual machine to represent resulting intermediate states. As examples,

the trap instruction represents the reduction of an erroneous state, and the

invoke instruction represents the invocation of a function instance by its

address in memory.

2.1 Non-Web Embeddings

As the name WebAssembly implies, its primary focus is Web-based software;

though it is not solely tied to the Web. Other non-Web environments execute

WebAssembly for a variety of reasons: its safe memory model, its high per-

formance, and it being a universal, encapsulated, and independent compile

target. The last is particularly interesting given its bidirectional implications:

a programmer can truly write and compile a piece of software once and run

6

it nearly anywhere, and a programmer can depend on other software written

in any language that supports WebAssembly.

WASI (WebAssembly System Interface) is a project that defines a family

of APIs for WebAssembly to interact with a traditional system environment

to perform common, core tasks such as interaction with the filesystem and

networking[9]. These APIs are designed to be a common target for embedders

to support, allowing optimal portability of systems-focused WebAssembly

programs while maintaining the security and sandboxing of the WebAssembly

platform[11]. WASI’s fd_readdir, for example, is a host function that allows

WebAssembly code to read the contents of a directory on the environment’s

filesystem.

2.2 Past Experiments

The concept of an alternative to JavaScript for running applications on the

Web is not entirely new. Two previous notable examples, embedded Flash

applications and Java Applets, were once-popular ways to write software that

others could run in a web browser using other programming languages. While

they are similar in concept to WebAssembly, there are several fundamental

differences that allowed them to fall out of favor and eventually lead to the

development of WebAssembly.

7

https://github.com/WebAssembly/WASI/blob/master/phases/snapshot/docs.md#-fd_readdirfd-fd-buf-pointeru8-buf_len-size-cookie-dircookie---errno-size

Firstly and primarily, both Flash and Java Applets were individual projects

by single organizations, Adobe and Oracle respectively, that operated in web

browsers through the use of plugins. They were not part of the standardized

Web; they were instead isolated boxes that ran inside of web pages once a user

installed a separate piece of software into their browsers that allowed them

to work. Because they operated only using browser plugins, they are unsup-

ported on popular mobile platforms such as Android and iOS. WebAssembly,

by contrast, is developed in the open as a web standard—the direction of the

project is not at the sole discretion of any one organization. WebAssembly

virtual machines are integrated directly into modern browsers, requiring no

additional action by the user to enable. If a given applet requires a newer

version of the Java Runtime Environment (JRE) than is installed on the

system, or if no JRE is installed at all, the user must download and install

it. The Java 8 Runtime Environment installer currently is between 60 and

80 MB, depending on the platform. Performing this installation requires ad-

ministrative privileges, preventing users on shared systems from running the

applet if they are not able to perform the installation. While WebAssembly

requires its own execution environment like Flash and Java Applets, on the

Web this environment is intertwined heavily with existing JavaScript engines:

the three most popular web browsers, Apple’s Safari, Google’s Chrome, and

Mozilla’s Firefox, each execute WebAssembly using their previously-existing

8

JavaScript engines[5, 8, 70].

Both Flash and Java Applets provided ways to interact with JavaScript

and the web page, but the primary way for a user to interact with both were

via the plugins’ embedded objects within the page. This disconnect between

the web page and the application resulted in a jarring disintegrated expe-

rience for users, and poor or nonexistent accessibility by default for screen

readers. WebAssembly, by contrast, does not have its own way of interacting

with the user—all interactions require utilizing the web embedding’s host

functions, defined by the WebAssembly JavaScript Interface[14] and Web-

specific extensions provided by the Web API[15] and use JavaScript as an

intermediary. While this may result in more work on the part of program-

mers, it results in a fully integrated experience by the user: something that

is part of the Web, not something that is simply stuck inside the web page.

Finally, as previously mentioned, WebAssembly was designed with major

goals of high performance and security. While Java applets and Flash appli-

cations can offer high performance in optimal circumstances, their reliance on

software installed on the host system has security implications. Integrating

with another piece of software introduces new potential vectors for attackers

to exploit—the larger attack surface creates more opportunities for software

bugs to result in security vulnerabilities[12, 1]. Security researchers[10] and

9

the United States Cybersecurity & Infrastructure Security Agency[38] sug-

gest disabling such plugins in order to increase security.

Steve Jobs, CEO of Apple and the primary inventor of the iPhone, listed

many of the above reasons for his refusal to provide support for Flash on

iPhone devices[23]. This lack of support on popular mobile devices, along

with the advancement of more powerful open and standardized Web platform

features, resulted in Flash falling out of favor[18]. Flash was deprecated in

2017 by Adobe, with an end-of-life date of December 2020[2].

2.3 Evolving WebAssembly

The defined goals of the WebAssembly project detail the process for evolv-

ing the language: incrementally, after providing a minimum viable product

(MVP) core language specification and implementation[60]. For the release

of the 1.0 MVP, the main requirements of being a well-defined replacement

for asm.js with distributable modules, efficient binary bytecode, and high

performance were the focus[62]. Version 1.0 of the specification was tagged

on July 20, 2019[53], and focus is now on adding features to increase the

language’s capabilities.

Development of the specification takes place in public GitHub reposito-

ries. While a large list of future features are at various levels of consideration

10

for post-MVP Wasm, the Community Group and Working Group utilize a

phase-based proposal system for introducing, discussing, and implementing

additional features for WebAssembly[59]. Proposals may introduce relatively

minor behavior changes or describe major substantive modifications to the

language; no proposal is too small to be considered, though larger propos-

als with greater surface area require more deliberation and agreement before

being accepted.

For a feature to be adopted into the language, a proposal must be drafted

which passes through a sequence of phases[65]:

0 Pre-Proposal: An individual contributor files an issue to present the

idea, optionally adds the proposal to the proposal list, and a proposal

champion or champions emerges who submit the proposal to the Com-

munity Group’s biweekly agenda. The Community Group votes on

general interest in further research and development of the proposal.

1 Feature Proposal: After being approved by the Community Group,

the proposal is added to the proposal list if it has not been added

already. A new repository is forked from the main WebAssembly spec-

ification, which is used to facilitate discussion, design, and specification

of the feature.

2 Proposed Specification Text Available: Once the full proposed

11

English specification text is available in the proposal’s repository, along

with a reasonable community consensus, prototype implementations for

the proposed features are created so that a test suite can be added.

3 Implementation Phase: After a satisfactory test suite is created and

passes for the feature in some implementation, embedders implement

the feature and integrate the changes into the reference WebAssembly

interpreter.

4 Standardize the Feature: After Web VMs and toolchains imple-

ment the feature and the Community Group reaches consensus for the

feature and its design choices, the feature is handed off to the Working

Group for final stages of discussion and handling of edge cases. The

Community Group is responsible for major feature changes and design

decisions, so the proposal is essentially frozen once being passed to the

Working Group.

5 The Feature is Standardized: Consensus is reached by the Working

Group that the feature is complete.

In practice, in order to be deliberate about changes to the language,

proposals can take a great deal of time before reaching phase 5 and being

fully integrated into the WebAssembly specification; as of the time of this

writing only five proposals have done so[45]. The first such proposal was

12

standardized relatively early in WebAssembly’s life—prior even to the ini-

tial 1.0 release—with the Mutable Globals Proposal[48] on June 6, 2018[68].

The Multi-value Proposal, which was in phase 4 at the time of the original

mechanization and already included in it, and the Non-Trapping Float-to-Int

and Sign-Extension Operators proposals mechanized in this project were all

integrated at once on March 11, 2020[69]. Finally, the JavaScript BigInt to

WebAssembly i64 Integration proposal[58], a proposal which does not modify

the core WebAssembly language itself but the JavaScript API, advanced on

June 9, 2020[36]. There are 23 currently outstanding proposals: 6 in phase

3, 4 in phase 2, 9 in phase 1, and 4 in the pre-proposal phase 0[63].

Proposals may depend on one another: for example, a notable proposal for

Interface Types adds functionality to describe high-level non-primitive values

such as strings or records so that values of these types can be passed between

WebAssembly modules[40]. Because these types are not of the four primitive

value types supported by WebAssembly, there must be a way to refer to

these constructs indirectly. Thus, the Interface Types proposal depends on

the Reference Types proposal, which adds typed reference values for functions

and other external types[52].

The WebAssembly community consists of a collection of groups focused

on particular parts of the language and ecosystem. The two primary groups

13

involved with the development of the language and ecosystem are the Work-

ing Group and Community Group. The Working Group is an official World

WideWeb Consortium (W3C) group consisting of the primary group of stake-

holders in charge of steering the development of the language. The Working

Group currently is comprised of 48 participants representing 14 organizations

including American organizations such as Google, Apple, Intel, Facebook,

and Microsoft, and organizations from other countries such as Tencent, LG,

and Huawei[39]. The Chair of the Working Group is Ben Smith, of Google.

The Community Group represents the broad community as a whole, and

all community members involved with or interested in the development of

the language are welcome; the only requirement is registering for a W3C

account and agreeing to the terms of the group. The Community Group’s

meetings and discussions are facilitated primarily using a dedicated GitHub

repository[61], and it hosts biweekly meetings via video conference. Meeting

minutes and supplemental materials are posted afterward in the repository,

and off-cycle discussion takes place in the repository’s issue tracker.

In addition to the Community Group and Working Group, smaller sub-

groups target more specific facets of the language or associated platforms. As

examples, there is the WASI subgroup for development of the WebAssembly

System Interface[67], a Debugging subgroup for development of debugging

tools[66], and subgroups for particularly large and critical proposals such as

14

the Interface Types, Garbage Collection, and SIMD proposals. Each sub-

group determines its own meeting schedule and processes, though there are

discussions of unifying them[51].

15

3 Proof Mechanization

Formal handwritten proofs continue to be the standard for showing that a

given system holds certain properties, but they suffer from several drawbacks.

They can be difficult to both read and write, because often they require

maintaining a great deal of state of the problem space within one’s head

at a given time. Additionally, making adjustments to logical assertions or

intermediate lemmas is challenging, as even a minor adjustment in one section

of the proof may cause seemingly unrelated statements elsewhere to no longer

hold. Finally, they can leave small hidden gaps of missing logic that are easily

glossed over by reviewers, such as when something seems so obviously the case

that no one bothers to question it, or when ambiguously phrased assertions

result in potential logical errors.

Proof assistants aim to address these goals by providing a framework in

which logical proofs can be encoded in a structured form and verified auto-

matically by the proof assistant software. This encoding of a natural language

proof to such a verifiable format is called mechanization. Proof assistants can

be used to model a variety of logical or mathematical systems, though have

received much attention for proving properties about programming languages

in particular[6, 24, 41]; the (hopefully strict and well-defined) specifications

16

of such languages lend themselves well to translation into mechanized forms.

Ideally, these mechanizations are also human-readable, and provide a high

level of “eyeball closeness” to any natural language proofs and other source

materials such as language specifications[6].

Many proof assistants exist, including Coq[72], Isabelle[30], Lean[29], and

SASyLF[3]. In addition to the fundamental purpose of proof verification,

many such tools assist proof writers by providing automated proof tactics or

methods which attempt to automate the proof for a given assertion. While

this can greatly reduce the tedium of both writing and reading proofs that

apply logical steps individually, it also can result in confusion when such

proof methods do not behave as expected. In writing, debugging such cases

can be challenging due to nonexistent failure messages, and even cases of

simply forgetting a rule when providing the proof method with the list of

rules to apply are often unclear. When reading, automatically-proved asser-

tions provide little context, requiring the reader to simply trust the method’s

claim about the assertion. This is particularly the case when certain tactics

implicitly include lemmas or rules, which is possible in certain circumstances.

In order to understand the details of the claim, one must deconstruct it ei-

ther mentally when reading or by reducing it to smaller logical steps when

debugging. As a result, such automation is useful, but its overuse can re-

sult in terse mechanizations that are difficult to understand when reading or

17

performing modifications.

18

4 Soundness

A programming language with a sound or safe type system provides certain

guarantees that operations are only performed on values of the appropriate

type. For example, it prevents one from mistakenly adding a number to a

string of textual characters, or from attempting to access a nonexistent prop-

erty of a record or object. Typically, a programming language’s type system

is considered sound when it exhibits the following two primary properties[19]:

1. Preservation: If an expression is well-typed and performs a step of

evaluation, then the resulting expression maintains the original type.

2. Progress : If an expression is well-typed, it either has been reduced to

a value, or it can be further evaluated.

It is important to note that just because a language is considered sound

does not mean that every program written for it is entirely safe in all contexts.

Firstly, the soundness of a language’s specification provides no guarantee of

the soundness of a particular implementation of the language; a mistake

in a particular WebAssembly virtual machine may still result in undefined

behavior. Secondly, while a type-safe programming language prevents pro-

grammers from making mistakes with respect to unexpected or unconsidered

19

possibilities regarding values and their types, it by no means ensures that

all code is bug-free. As an example, consider an add function that accepts

two numbers and returns one number. While strong typing and type safety

ensures that it will only be operating on numbers as intended, it does not

ensure that the function will properly perform the addition—the type sys-

tem can only prevent errors involving types. Any number of other logical

or operational errors can still arise: the addition operation in add may over-

flow the maximum value that can be expressed in the number type resulting

in the incorrect value being returned, or complex conditional logic or even

a character input mistake by the programmer may result in a subtraction

being performed instead, for example. In all of such cases the types of the

values are correct and sound, but the values themselves are not.

Finally, the safety of a language’s type system makes no guarantees about

the safety and security of the language itself. As an illustration of this, de-

spite WebAssembly’s type-safety and its design goal of security, vulnerabil-

ities have been found primarily due to its simple linear memory model and

the ability to escape the virtual machine sandbox using embedder host func-

tions[25]. However, one such issue could have been prevented by a differently

designed sound type system: that memory addresses are simply primitive

32-bit integers. If instead memory addresses had a dedicated type to them-

selves, functions designed to operate on integers and functions designed to

20

accept memory address pointers would be incompatible, preventing certain

remote code execution attacks[25, p. 10].

Core WebAssembly’s type system is proved to be sound via a natural

language proof included in the specification[64, p. 140]. No additions will be

allowed to the specification that knowingly violate WebAssembly’s soundness

guarantees. In order to confirm the soundness claims made by the rather terse

proof, a mechanized proof of the full language specification was developed

independently, using the Isabelle/HOL proof assistant[41]. Watt’s mecha-

nization of core WebAssembly took place separately from the development

of the language, though it proved crucial in its foundation by identifying

several major errors in the official WebAssembly specification. These issues

were brought to the attention of the Working Group and fixed, resulting in

foundational language features such as exception propagation and the Return

operation to be rewritten[41, p. 60-61]. Additionally, the declared require-

ments of host functions, functions provided by the embedding environment

that can be called by WebAssembly code, were discovered to be too weak to

maintain type safety and rewritten as a result[41, p. 61].

In addition to proving soundness of the core language via progress and

preservation, the original mechanization included several notable additional

features. Firstly, it included one proposal not existing in the initial version

21

of the core language: the Multi-value Proposal[47]. In the original spec-

ification, functions and instructions can return at most one result. This

restriction is removed by the Multi-value Proposal, allowing multiple return

values for each[46]. Additionally, as well as the soundness proof of the core

language, the initial mechanization included two separate modules which

were also proven sound with respect to the mechanized specification: an

executable type checker[41, p. 61] and an executable interpreter[41, p.62].

These additional modules are important because they provide a link between

the mechanized, verified specification and actual existing code. By compar-

ing the results of these modules to their official implementations by utilizing

the WebAssembly test suite or existing real-world software, trust of correct-

ness is established in the mechanization[6]. Trust that the mechanization

is correct with respect to the specification strengthens the claims that the

mechanization makes about the soundness of the specification itself.

Unfortunately, the mechanization of the language plays no role currently

in steering WebAssembly development. To my knowledge, no work is being

done to extend it, and new language features are not required to be mecha-

nized before they are adopted into the standard. Aside from human checks

by the Working Group, which are fallible for reasons mentioned in the pre-

vious chapter, no process currently exists to prevent proposals from causing

errors making the type system no longer sound. While no requirement exists

22

currently, it would be useful to require proof that the type system is not ad-

versely affected before a proposal can be finalized and adopted. The Isabelle

mechanization, particularly when augmented with the language additions in-

cluded with this work, is the best starting point for such a requirement and

the adoption of a more rigid process for ensuring the type system stays intact.

23

5 Incremental Soundness

My project builds on the existing Isabelle proof, extending the initial mech-

anization to include extensions provided by three late-stage proposals: Non-

trapping Float-to-Int Conversions[49], Sign Extension Operators[55], and

Tail Call[56]. Definitions and proofs for the type checker and interpreter

are also updated accordingly. The source code for my mechanization can be

found on GitHub[28].

A great deal of the challenge in this task involved learning how to ef-

fectively use Isabelle. Prior to this project I was only vaguely familiar with

the advanced features utilized in the original WebAssembly mechanization,

despite being familiar with the core concepts of programming language proof

mechanization as a whole with another proof assistant, SASyLF, and reading

the official Isabelle tutorials and reference manuals. The SASyLF proof as-

sistant is designed to be explicit: one must specify exactly which logical rules

and assumptions are being applied each step in the process. Additionally, it

is designed to be simple to use, with relatively few advanced features and log-

ical constructs. By contrast, Isabelle both embraces implicitness and equips

users with many advanced features and slightly nuanced ways to perform

similar tasks.

24

An Isabelle proof can consist of several distinct but related types of syn-

tax. The most common and recommended framework used in modern Is-

abelle proofs is Isabelle/Isar, which is modeled after human-readable logical

proofs[71]. In addition to the structured Isar syntax, logical steps can be

applied individually using the older apply script syntax. The Isar and apply

script syntaxes can be interwoven, resulting in a jarring shift when encoun-

tered by a less experienced user. In addition to the two primary inner proof

syntaxes which perform the specifications and proofs, Isabelle proofs must

make use of another layer of outer syntax of Isabelle types and logical terms:

an object-logic, which is most commonly Isabelle/HOL (higher-order logic).

Additionally, logical rules can be defined using the Isabelle/Pure syntax. As

a result, in order to become productive with Isabelle one must learn many

different sublanguages; particularly so when diving into a large proof that

makes extensive use of more advanced features of each.

Isabelle provides implicit definitions for a great deal of constructs, such as

application rules for defined functions and possible outcomes of an analysis of

possible cases. These definitions are named according to documented rules,

though they often include numeric indices when dealing with collections of

premises or a list of possible outcomes. Occasionally, these indices are the

only or most convenient way to refer to a premise or rule in order to make

use of it, leading to a given assertion being shown simply by 3, for example.

25

While the meaning of such names can be shown using an Isabelle command,

reading such a proof can quickly become confusing even to advanced users.

Finally, these numeric indices can also cause issues when refactoring or adding

to proofs, as in the case of my mechanization, where the definition of a

new instruction type causes all subsequent instruction types to have their

corresponding indices shifted accordingly. Thus, it was common for me to

have to adjust a reference from 14 to 15 because of the newly-added rule 12,

for example.

At the outset of my mechanization, two of the newly-mechanized propos-

als, Non-Trapping Float-to-Int Conversions and Sign Extension Operators,

were at phase 4. After the mechanized proofs were completed as part of this

project, they (along with the Multi-value Proposal already present in the ini-

tial mechanization) have advanced to phase 5 and were fully integrated into

version 1.1 of the WebAssembly specification as of April 9, 2020[35]. Tail

Call remains a phase 3 proposal currently in the implementation phase[63].

5.1 Non-trapping Float-to-Int Conversions

The first of the three mechanized, this proposal introduces 8 new floating

point truncation instructions of the form i{32,64}.trunc_sat_f{32,64}_{u,s},

the bracketed groups representing the selection of destination type, source

26

type, and signedness, respectively[50].

These new instructions are saturating, meaning that their results are lim-

ited to the maximum or minimum possible value for the given destination

type. Non-saturating versions of these instructions were present in the ini-

tial release of WebAssembly, and were defined to trap in the event that the

floating point number could not be represented in the target integer type’s

possible range of values, or in the event that the floating point number was

the special “not a number” value as defined by the IEEE floating point stan-

dard (NaN). Instead of trapping, these new instructions return the minimum

or maximum target integer value in case of underflow or overflow, and 0 in

the event that the source floating point number is NaN, resulting in operations

that never fail.

In the mechanization, numeric conversion is performed using a cvt con-

version function which determines the correct operations for the types of the

values passed to it, deferring to the correct cvt_(value type) function which

inserts the appropriate instruction for the given conversion. Because some

conversions between types are impossible, and some conversion operations

can fail resulting in a trap, cvt returns an Option value indicating Some

value if the conversion succeeded or None otherwise, indicating an impossible

conversion, or a conversion operation that failed and trapped. At a high

level, the new cvt_sat saturating conversion function behaves identically to

27

the existing cvt but simply fails in fewer cases; as a result the required addi-

tions were straightforward to model based on the existing definition. Because

the new instructions do not trap, I initially set out to model the cvt_sat

collection of operations so that they did not return an Option and simply

returned a value in all cases. This was a mistake; in order for the new sat-

urating conversion function to fit nicely into the existing mechanization, it

must to be able to return None when the operation was impossible, such as

converting to the same type as the original input type. After struggling to

modify the surrounding proofs to handle impossible conversions elsewhere,

reverting cvt_sat to return an Option like the non-saturating version, but

which always returns Some value when performing a truncation, resulted in a

straightforward addition of less resistance, maintaining the language’s proof

of soundness without requiring drastic changes to the existing theorems and

lemmas. Overall, 172 lines were added and 176 lines were modified during

the mechanization of this proposal, many of the modifications being minor

numeric index adjustments accounting for the new rules.

5.2 Sign Extension Operators

Similarly to the previous proposal, the Sign Extension Operators proposal

introduces several new numeric conversion operations which are similar to

28

existing instructions[54]:

• i32.extend8_s: sign extend the lower 8 bits of a 32-bit integer to the

full integer width

• i32.extend16_s: likewise, but the lower 16 bits

• i64.extend8_s: sign extend the lower 8 bits of a 64-bit integer to the

full integer width

• i64.extend16_s: likewise, but the lower 16 bits

• i64.extend32_s: likewise, but the lower 32 bits

Already present in the MVP release of WebAssembly are i64.extend_s

and i64.extend_u[64, p. 11], for extending a 32-bit integer value (signed or

unsigned, respectively) to a 64-bit integer value. At first inspection, these

seem like the only extension operations required, as WebAssembly only sup-

ports 32- and 64-bit integers. These new instructions, by contrast, do not ac-

tually modify the type of the value, instead only its contents: i32.extend8_s

receives an i32 type as input and returns an i32 type as output. These new

instructions reinterpret the contents of a value, operating on smaller signed

integer values packed inside the bits of one of WebAssembly’s integer types.

While such cases are unlikely when using pure WebAssembly, interaction

with other environments or languages may result in such values existing.

29

The distinction is confusing. In fact, the distinction was even missed

in initial discussions for this proposal, resulting in i64.extend32_s being

dismissed as equivalent to the existing i64.extend_s instruction. How-

ever, i64.extend_s receives an i32 type as input, returning an i64 type.

This contrasts with the behavior of the added instructions, which do not

change the type of the input but instead reinterpret its contents. As such,

i64.extend32_s receives an i64 type containing the bits of a signed 32-bit

integer and reinterprets it, without changing the container’s type, to an i64

type containing a signed 64-bit integer. This is indeed a distinct operation,

and was hence added to the proposal afterward[54].

Of the three proposals added, Sign Extension Operators was the most

straightforward to mechanize. Each of the new instructions were added, along

with a new extendsop typing rule and extendsop_i32 and extendsop_i64

reduction rules. Each of the new rules receives an ExtendS argument, which

is a new basic instruction variant representing either 8, 16, or 32-bit sign

extension operation. Because extend32_s is only valid for 64-bit integers,

the i64 type had to be extended from its original wasm_int defined type to a

newly-created wasm_int64 type which contains the extend32_s instruction.

After adding the new instructions and rules, a new extendsop application

definition was created for each integer type. Finally, with the additions

in place, all that remained was to account for the new possible instruction

30

types in several existing lemmas and theorems, and to update the interpreter

and checker modules. The interpreter additionally required one new lemma

stating that a sign extension operation always either succeeds or results in an

error if the types are invalid, which Isabelle was able to prove trivially by case

analysis. During the mechanization of this proposal 104 lines were added and

223 modified, many modifications being minor numeric index adjustments.

5.3 Tail Call

Like the previous two proposals mechanized in this project, the Tail Call

proposal also does not introduce any completely new behavior at a high level.

Core WebAssembly explicitly disallows tail-call optimizations for functions

that return the result of a function call. To alleviate this and allow developers

to opt into such optimizations, this proposal introduces a “return” version of

each existing call instruction[34]:

• return_call, based on the behavior of the existing call instruction

which calls a function directly

• return_call_indirect, based on call_indirect which calls a func-

tion via a reference to memory

These new instructions are defined to “unwind the stack” in the same

way a call to the normal return instruction does: by clearing the current

31

execution frame and removing it, along with its local values, from the stack.

Because the arguments to the called function are also a part of that frame,

the new instructions first must remove those argument values, and replace

them after popping the stack frame and before invoking the new function—

behavior not possible using the existing instructions alone.

Semantically, the new instructions actually do very little themselves:

return_call is defined almost identically to call, and return_call_indirect

to call_indirect. The substantial addition is the return_invoke tail-

invocation administrative instruction, which defines the execution semantics

of the additional behavior. First, it validates that the function to be called

exists, and that there are enough values on top of the stack to be used as

its defined number of arguments. It then removes these arguments, ensures

that there is a frame on the stack, and removes elements from the stack until

the frame is cleared and popped itself. Finally, the arguments are returned

to the stack, and the existing invoke administrative instruction is called to

perform the execution of the new function.

While the behavior provided by Tail Call is not entirely new on a high

level, the new operations interact with the environment in a nontrivial way

by unwinding the stack. Of the three proposals, Tail Call was by far the

most complicated to mechanize. Modeling it is relatively straightforward;

the typing and execution semantics of the instructions are well-defined by

32

the specification. However, because of their control-flow nature, many prop-

erties had to be shown to still hold after the addition of the tail-invoke ad-

ministrative instruction. Thankfully, return_invoke’s stack manipulation

is similar enough to return and break that the latter two provided great

starting points for the additions.

Unlike the two previous proposals, updating the interpreter after model-

ing the new instructions was not trivial. Because tail-invocation introduces

new behavior at the completion of a step of evaluation, a new result step

type, RSTailInvoke, had to be introduced. The existing returning result

step type, RSReturn, was not sufficient as it only contains the list of re-

turned values to the next step of evaluation, while RSTailInvoke contains

the function to be invoked as well. This modeling, while determined inde-

pendently, mirrors that used in the official proposal interpreter[32]. With

the addition of this new result step type, its occurrence had to be handled at

the end of a step of evaluation requiring new logic (though similar to that of

the existing RSReturn) instead of mere updates, and its possibility had to be

accounted for in various places throughout the interpreter and its soundness

and completeness assertions.

Owing both to the amount of new behavior introduced, as well as the re-

quirement for several helper lemmas to account for new language constructs,

the amount of added code compared to modified code is significantly higher

33

than with the previous two proposals: 1117 lines were added and 132 modi-

fied.

While performing the modeling for the proposal’s mechanization, I en-

countered a mistake in the proposed specification. Initially, after checking

that the function exists and determining its type and number of arguments

and return values, the specification mistakenly required that the stack con-

tain at least as many values as the function is declared to return, instead

of ensuring that there were enough values to use as arguments to the func-

tion. The subsequent behavior was defined correctly, as the number of ar-

guments were removed, but the check would not ensure they existed before-

hand. Thus, as initially written, the behavior was both overly restrictive

(valid return_invoke calls could fail if the function returned more values

than existed on the stack) and unsafe (functions with more arguments than

return values could result in non-values being passed as arguments). This

mistake was brought to the attention of the maintainers and was fixed shortly

thereafter[27].

Despite the oversight’s relatively minor size (only a single letter’s dif-

ference), finding otherwise easily-overlooked mistakes is one of the primary

strengths of mechanization in proofs as mentioned earlier in this document;

while the human eye can easily disregard a small typo or gloss over some-

thing that seems obvious, proof assistants insist that everything be proved

34

without a doubt. This typo may have been caught by a reviewer before being

fully adopted into the official language specification, though the statement

existed in its incorrect state for over two years, since the proposal’s initial

authoring[33].

35

6 Related Work

Huang developed an independent mechanization of WebAssembly using the

Coq proof assistant, and came close to proving its soundness[20]. Challenges

involving control instructions, polymorphism, stack-unwinding, and infras-

tructural difficulties involving unintuitive stack ordering in certain contexts

prevented the author from fully completing the correctness proof. Fortu-

nately for myself, all of these challenges were already addressed in the Isabelle

mechanization on which my work was based, and I was able to take advantage

of these existing definitions when implementing the proposals. The author

mentions plans to finish the correctness proof, implement an interpreter and

type checker, and integrate proposal changes into the mechanization in order

to prove their soundness as well, much like the Isabelle mechanization and

my work does and plans to do.

Bodin et al. mechanized the JavaScript ECMAScript 5 standard in Coq,

and created a reference interpreter proved correct with respect to the mech-

anization. Unlike WebAssembly with its small number of values and in-

struction set, mechanization of large-scale languages that are intended to be

written directly are massive undertakings and significantly more challeng-

ing. Because of this, the JSCert mechanization focuses on the core aspects

36

of the language, omitting certain superficial niceties such as for-in loops as

well as many standard library functions and libraries that can be considered

derivable from core language features.

Jung et al. mechanized a core calculus of the Rust programming language

using the Iris logic framework and an accompanying extensible soundness

proof [24]. Rust is a modern systems language and one of the leading lan-

guages with support for compiling to WebAssembly. Notable features of the

language include its novel ownership and borrowing lifetime model for ref-

erences and their valid lifetimes, and its composable trait-based inheritance

scheme. Like with JSCert, the full language is too massive of an undertak-

ing to be implemented at once—in fact, no full language specification even

exists to use as a starting point—so the authors reduced the language to a

continuation-passing style language that includes the core lifetime features

mentioned above named λRust. Iris[21], a “Higher-Order Concurrent Separa-

tion Logic Framework, implemented and verified in the Coq proof assistant,”

provides built-in support for ownership reasoning, making it a fitting choice

for a proof assistant for this task. Dang et al. extended this work, accounting

for relaxed-memory operations in use by concurrent Rust programs[13].

Watt et al., the author of the original Isabelle WebAssembly mechaniza-

tion on which my work is based, used the Alloy model checker[22] to find er-

rors in JavaScript’s specification causing concurrency issues and compilation

37

problems[44]. In particular, the authors show that JavaScript’s concurrency

model does not in fact support compilation to the ARMv8 scheme which is

used in real-world applications without violating its specified guarantees, and

also show that JavaScript’s model does not guarantee the essential correctness

condition of Sequential Consistency for Data-Race-Free (SC-DRF) programs.

An amended version of the specification is proposed that fixes these errors,

and mechanized in Coq with proofs of compilation and SC-DRF correctness.

38

7 Future Work

Certainly, much remains to be done in the area of WebAssembly soundness

validation. With the three proposals included in this work, as of the time of

this writing no other proposals which affect the language specification and

its soundness have been fully adopted into the language. However, many

proposals remain outstanding. In order to maximize the effectiveness of proof

mechanization, such attempts should be performed before they are adopted

in order to confirm that they do not adversely affect the soundness of the

language’s type system; though attempts to mechanize a proposal which is

changing rapidly poses challenges in itself. Five proposals in phase 3 or

greater are currently outstanding without a mechanized proof. Of particular

importance are proposals with larger scope that affect core behavior of the

system and its typing rules, such as the phase 4 Reference Types Proposal[52,

43] and phase 2 Threading Proposal[57, 43].

The mechanization’s extensions have been approved by its original author,

Watt, and plans are in place to integrate the changes into the official source

and the WebAssembly entry in Isabelle’s Archive of Formal Proofs[42].

39

8 Conclusion

This paper investigates the WebAssembly language and the soundness of

its type system. Beginning with an existing mechanized proof of the core

language using the Isabelle proof assistant, my project extends the mecha-

nization to include three additions to the language, two of which have since

been included into a new release of the official WebAssembly language speci-

fication, with the third remaining a proposed addition still under review and

finalization.

Over the course of this project I have had the opportunity to join the

WebAssembly community, learn about the language and its origins, and take

part in Community Group and subgroup video conference meetings. Gaining

understanding of a core standardized language for the Web during its infancy

and becoming familiar with its evolution process will be of immense benefit

to me as a web developer as the language and ecosystem matures. On a

higher level, my efforts in understanding and modeling a language specifica-

tion and its type system and proving its soundness have given me a deeper

understanding of programming language design and type theory as a whole.

Small details in an instruction’s execution or typing rules often have large

implications when the program is validated or executed.

40

Even for a rather simple language like WebAssembly with its four primi-

tive types, small instruction set, and straightforward memory and execution

models, issues can quickly arise and soundness can be lost if a language fea-

ture is modeled even slightly incorrectly—for example when asserting that

an incorrect number of values are present. Ensuring soundness and proper

execution is critical when designing a language so that it holds the properties

that it claims to: the type system will prevent bugs and the language will do

what the programmer tells it to. Despite the importance of this assurance,

it is challenging to do so, and particularly difficult to ensure that it stays so

when making changes to the language. Proof mechanization is one way to

ease this burden, providing language authors a more foolproof way to keep

their promises to their users.

41

Bibliography

[1] Adobe. Security updates for Adobe Flash Player. June 9, 2020. url:

https://helpx.adobe.com/security/products/flash-player.

html (visited on 07/14/2020).

[2] Adobe Corporate Communications. Flash & The Future of Interactive

Content. July 25, 2017. url: https://theblog.adobe.com/adobe-

flash-update/ (visited on 06/19/2020).

[3] Jonathan Aldrich, Robert J. Simmons, and Key Shin. “SASyLF: An

Educational Proof Assistant for Language Theory”. In: Proceedings of

the 2008 International Workshop on Functional and Declarative Pro-

gramming in Education. FDPE ’08. Victoria, BC, Canada: Association

for Computing Machinery, 2008, 31–40. isbn: 9781605580685. doi: 10.

1145/1411260.1411266. url: https://doi.org/10.1145/1411260.

1411266.

42

https://helpx.adobe.com/security/products/flash-player.html
https://helpx.adobe.com/security/products/flash-player.html
https://theblog.adobe.com/adobe-flash-update/
https://theblog.adobe.com/adobe-flash-update/
https://doi.org/10.1145/1411260.1411266
https://doi.org/10.1145/1411260.1411266
https://doi.org/10.1145/1411260.1411266
https://doi.org/10.1145/1411260.1411266

[4] asm.js. Working Draft. Aug. 18, 2014. url: http://asmjs.org/spec/

latest/ (visited on 04/12/2020).

[5] JF Bastien, Keith Miller, and Saam Barati. Assembling WebAssembly.

June 6, 2017. url: https://webkit.org/blog/7691/webassembly/

(visited on 06/28/2020).

[6] Martin Bodin et al. “A Trusted Mechanised JavaScript Specification”.

In: SIGPLAN Not. 49.1 (Jan. 2014), 87–100. issn: 0362-1340. doi:

10.1145/2578855.2535876. url: https://doi.org/10.1145/

2578855.2535876.

[7] Geoffrey Booth. CoffeeScript. May 25, 2020. url: https://coffeescript.

org/ (visited on 07/15/2020).

[8] Mathias Bynens. V8 JavaScript engine. Oct. 25, 2019. url: https:

//v8.dev/ (visited on 06/28/2020).

[9] Bytecode Alliance. WASI: WebAssembly System Interface. Nov. 12,

2019. url: https://github.com/WebAssembly/meetings/blob/

master/process/phases.md (visited on 04/19/2020).

[10] Matteo Campofiorito. Pwn2Own 2010: interview with Charlie Miller.

Mar. 1, 2010. url: https://web.archive.org/web/20110424022058/

http://www.oneitsecurity.it/01/03/2010/interview-with-

charlie-miller-pwn2own/ (visited on 07/13/2020).

43

http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
https://webkit.org/blog/7691/webassembly/
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/2578855.2535876
https://coffeescript.org/
https://coffeescript.org/
https://v8.dev/
https://v8.dev/
https://github.com/WebAssembly/meetings/blob/master/process/phases.md
https://github.com/WebAssembly/meetings/blob/master/process/phases.md
https://web.archive.org/web/20110424022058/http://www.oneitsecurity.it/01/03/2010/interview-with-charlie-miller-pwn2own/
https://web.archive.org/web/20110424022058/http://www.oneitsecurity.it/01/03/2010/interview-with-charlie-miller-pwn2own/
https://web.archive.org/web/20110424022058/http://www.oneitsecurity.it/01/03/2010/interview-with-charlie-miller-pwn2own/

[11] Lin Clark. Standardizing WASI: A system interface to run WebAssembly

outside the web. Mar. 27, 2019. url: https : / / hacks . mozilla .

org / 2019 / 03 / standardizing - wasi - a - webassembly - system -

interface/ (visited on 06/03/2020).

[12] CVE Details. Oracle JRE: List of security vulnerabilities. July 30,

2019. url: https://www.cvedetails.com/vulnerability-list/

vendor_id-93/product_id-19117/Oracle-JRE.html (visited on

07/14/2020).

[13] Hoang-Hai Dang et al. “RustBelt Meets Relaxed Memory”. In: Proc.

ACM Program. Lang. 4.POPL (Dec. 2019). doi: 10.1145/3371102.

url: https://doi-org.ezproxy.lib.uwm.edu/10.1145/3371102.

[14] Daniel Ehrenberg, ed. WebAssembly JavaScript Interface. Version 1.

W3C, Dec. 5, 2019. url: https://www.w3.org/TR/wasm-js-api-1/

(visited on 07/01/2020).

[15] Daniel Ehrenberg, ed. WebAssembly Web API. Version 1. W3C, Dec. 5,

2019. url: https://www.w3.org/TR/wasm-web-api-1/ (visited on

07/01/2020).

[16] Jack Fransham. Introducing Lightbeam: An Optimising Streaming Web-

Assembly Compiler. May 4, 2019. url: http://troubles.md/lightbeam/

(visited on 04/19/2020).

44

https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-19117/Oracle-JRE.html
https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-19117/Oracle-JRE.html
https://doi.org/10.1145/3371102
https://doi-org.ezproxy.lib.uwm.edu/10.1145/3371102
https://www.w3.org/TR/wasm-js-api-1/
https://www.w3.org/TR/wasm-web-api-1/
http://troubles.md/lightbeam/

[17] Jack Fransham. WebAssembly Troubles part 1: WebAssembly Is Not a

Stack Machine. Jan. 30, 2019. url: http://troubles.md/posts/

wasm-is-not-a-stack-machine/ (visited on 04/19/2020).

[18] Andrew Griffin. Adobe Flash to be killed off by 2020, killed off by the

iPhone and new web technologies. July 26, 2017. url: https://www.

independent.co.uk/life-style/gadgets-and-tech/news/adobe-

flash- dead- 2020- killed- off- iphone- html- 5- steve- jobs-

what-to-use-how-to-fix-not-working-a7860346.html (visited on

06/03/2020).

[19] Robert Harper. Practical Foundations for Programming Languages,

2nd edition. Cambridge University Press, 2016. isbn: 9781107150300.

[20] Xuan Huang. A Mechanized Formalization of the WebAssembly Spec-

ification in Coq. Rochester, NY 14586, 2019. url: https://www.cs.

rit.edu/~mtf/student-resources/20191_huang_mscourse.pdf

(visited on 07/14/2020).

[21] Iris Project. 2020. url: https://iris- project.org/ (visited on

07/15/2020).

[22] Daniel Jackson. “Alloy: A Lightweight Object Modelling Notation”. In:

ACM Trans. Softw. Eng. Methodol. 11.2 (Apr. 2002), 256–290. issn:

45

http://troubles.md/posts/wasm-is-not-a-stack-machine/
http://troubles.md/posts/wasm-is-not-a-stack-machine/
https://www.independent.co.uk/life-style/gadgets-and-tech/news/adobe-flash-dead-2020-killed-off-iphone-html-5-steve-jobs-what-to-use-how-to-fix-not-working-a7860346.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/adobe-flash-dead-2020-killed-off-iphone-html-5-steve-jobs-what-to-use-how-to-fix-not-working-a7860346.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/adobe-flash-dead-2020-killed-off-iphone-html-5-steve-jobs-what-to-use-how-to-fix-not-working-a7860346.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/adobe-flash-dead-2020-killed-off-iphone-html-5-steve-jobs-what-to-use-how-to-fix-not-working-a7860346.html
https://www.cs.rit.edu/~mtf/student-resources/20191_huang_mscourse.pdf
https://www.cs.rit.edu/~mtf/student-resources/20191_huang_mscourse.pdf
https://iris-project.org/

1049-331X. doi: 10.1145/505145.505149. url: https://doi.org/

10.1145/505145.505149.

[23] Steve Jobs. Thoughts on Flash. Apr. 2010. url: https://www.apple.

com/hotnews/thoughts-on-flash/ (visited on 06/03/2020).

[24] Ralf Jung et al. “RustBelt: Securing the Foundations of the Rust Pro-

gramming Language”. In: Proc. ACM Program. Lang. 2.POPL (Dec.

2017). doi: 10.1145/3158154. url: https://doi-org.ezproxy.

lib.uwm.edu/10.1145/3158154.

[25] Daniel Lehmann, Johannes Kinder, and Michael Pradel. “Everything

Old is New Again: Binary Security of WebAssembly”. In: (2020). url:

http://www.software-lab.org/publications/usenixSec2020-

WebAssembly.pdf (visited on 07/03/2020).

[26] llvm-admin team. The LLVM Compiler Infrastructure. url: https:

//llvm.org/ (visited on 07/27/2020).

[27] Jacob Mischka. Question about tail-invocation stack value length asser-

tion (item 3). Apr. 25, 2020. url: https://github.com/WebAssembly/

tail-call/issues/10 (visited on 05/11/2020).

[28] Jacob Mischka and Conrad Watt. May 17, 2020. url: https : / /

github.com/jacobmischka/wasm-isabelle (visited on 07/14/2020).

46

https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://www.apple.com/hotnews/thoughts-on-flash/
https://www.apple.com/hotnews/thoughts-on-flash/
https://doi.org/10.1145/3158154
https://doi-org.ezproxy.lib.uwm.edu/10.1145/3158154
https://doi-org.ezproxy.lib.uwm.edu/10.1145/3158154
http://www.software-lab.org/publications/usenixSec2020-WebAssembly.pdf
http://www.software-lab.org/publications/usenixSec2020-WebAssembly.pdf
https://llvm.org/
https://llvm.org/
https://github.com/WebAssembly/tail-call/issues/10
https://github.com/WebAssembly/tail-call/issues/10
https://github.com/jacobmischka/wasm-isabelle
https://github.com/jacobmischka/wasm-isabelle

[29] Leonardo de Moura et al. “The Lean Theorem Prover”. In: (2015).

url: https://leanprover.github.io/papers/system.pdf (visited

on 07/10/2020).

[30] Nipkow, Tobias and Paulson, Lawrence and Wenzel, Makarius and

Klein, Gerwin and Haftmann, Florian and Weber, Tjark and Hölzl,

Johannes. Overview. url: https://isabelle.in.tum.de/overview.

html (visited on 06/19/2020).

[31] John Resig. Asm.js: The JavaScript Compile Target. Apr. 3, 2013.

url: https://johnresig.com/blog/asmjs-javascript-compile-

target/ (visited on 04/12/2020).

[32] Andreas Rossberg. eval.ml. Apr. 4, 2018. url: https://github.com/

WebAssembly/tail-call/b‘lob/master/interpreter/exec/eval.

ml#L56 (visited on 07/11/2020).

[33] Andreas Rossberg. Implement basic tail-call proposal. Apr. 4, 2018.

url: https : / / github . com / WebAssembly / tail - call / commit /

8e82d8c9f534b0d262c756677c0576e527eb840d (visited on 07/07/2020).

[34] Andreas Rossberg. Tail Call Extension. Dec. 13, 2019. url: https:

//github.com/WebAssembly/tail-call/blob/master/proposals/

tail-call/Overview.md (visited on 05/11/2020).

47

https://leanprover.github.io/papers/system.pdf
https://isabelle.in.tum.de/overview.html
https://isabelle.in.tum.de/overview.html
https://johnresig.com/blog/asmjs-javascript-compile-target/
https://johnresig.com/blog/asmjs-javascript-compile-target/
https://github.com/WebAssembly/tail-call/b`lob/master/interpreter/exec/eval.ml#L56
https://github.com/WebAssembly/tail-call/b`lob/master/interpreter/exec/eval.ml#L56
https://github.com/WebAssembly/tail-call/b`lob/master/interpreter/exec/eval.ml#L56
https://github.com/WebAssembly/tail-call/commit/8e82d8c9f534b0d262c756677c0576e527eb840d
https://github.com/WebAssembly/tail-call/commit/8e82d8c9f534b0d262c756677c0576e527eb840d
https://github.com/WebAssembly/tail-call/blob/master/proposals/tail-call/Overview.md
https://github.com/WebAssembly/tail-call/blob/master/proposals/tail-call/Overview.md
https://github.com/WebAssembly/tail-call/blob/master/proposals/tail-call/Overview.md

[35] Ben Smith.Move 3 proposals from phase 4 to phase 5 (finished). Apr. 9,

2020. url: https://github.com/WebAssembly/proposals/commit/

f0ff21e00218bd050f479ef057085d9867f724da (visited on 05/11/2020).

[36] Ben Smith. WebAssembly Working Group Mailing List Archive. Re:

[WebAssembly Working Group]. June 9, 2020. url: https://lists.

w3.org/Archives/Public/public-webassembly/2020Jun/0000.

html (visited on 06/11/2020).

[37] The Emscripten Project. About Emscripten. 2020. url: https : / /

emscripten.org/docs/introducing_emscripten/about_emscripten.

html (visited on 04/12/2020).

[38] United States Cybersecurity & Infrastructure Security Agency. Se-

curing Your Web Browser. url: https : / / us - cert . cisa . gov /

publications/securing-your-web-browser (visited on 07/13/2020).

[39] W3C Team. WebAssembly Working Group - Participants. 2020. url:

https://www.w3.org/groups/wg/wasm/participants (visited on

06/12/2020).

[40] Luke Wagner. Interface Types Proposal. Apr. 15, 2020. url: https:

/ / github . com / WebAssembly / interface - types / blob / master /

proposals/interface-types/Explainer.md (visited on 06/11/2020).

48

https://github.com/WebAssembly/proposals/commit/f0ff21e00218bd050f479ef057085d9867f724da
https://github.com/WebAssembly/proposals/commit/f0ff21e00218bd050f479ef057085d9867f724da
https://lists.w3.org/Archives/Public/public-webassembly/2020Jun/0000.html
https://lists.w3.org/Archives/Public/public-webassembly/2020Jun/0000.html
https://lists.w3.org/Archives/Public/public-webassembly/2020Jun/0000.html
https://emscripten.org/docs/introducing_emscripten/about_emscripten.html
https://emscripten.org/docs/introducing_emscripten/about_emscripten.html
https://emscripten.org/docs/introducing_emscripten/about_emscripten.html
https://us-cert.cisa.gov/publications/securing-your-web-browser
https://us-cert.cisa.gov/publications/securing-your-web-browser
https://www.w3.org/groups/wg/wasm/participants
https://github.com/WebAssembly/interface-types/blob/master/proposals/interface-types/Explainer.md
https://github.com/WebAssembly/interface-types/blob/master/proposals/interface-types/Explainer.md
https://github.com/WebAssembly/interface-types/blob/master/proposals/interface-types/Explainer.md

[41] Conrad Watt. “Mechanising and Verifying the WebAssembly Specifi-

cation”. In: Proceedings of the 7th ACM SIGPLAN International Con-

ference on Certified Programs and Proofs. CPP 2018. Los Angeles,

CA, USA: Association for Computing Machinery, 2018, 53–65. isbn:

9781450355865. doi: 10.1145/3167082. url: https://doi.org/10.

1145/3167082.

[42] Conrad Watt. “WebAssembly”. In: Archive of Formal Proofs (Apr.

2018). http://isa-afp.org/entries/WebAssembly.html, Formal

proof development. issn: 2150-914x.

[43] Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. “Weak-

ening WebAssembly”. In: Proc. ACM Program. Lang. 3.OOPSLA (Oct.

2019). doi: 10.1145/3360559. url: https://doi.org/10.1145/

3360559.

[44] Conrad Watt et al. “Repairing and mechanising the JavaScript relaxed

memory model”. In: Proceedings of the 41st ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (2020).

doi: 10.1145/3385412.3385973. url: http://dx.doi.org/10.

1145/3385412.3385973.

49

https://doi.org/10.1145/3167082
https://doi.org/10.1145/3167082
https://doi.org/10.1145/3167082
http://isa-afp.org/entries/WebAssembly.html
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3385412.3385973
http://dx.doi.org/10.1145/3385412.3385973
http://dx.doi.org/10.1145/3385412.3385973

[45] WebAssembly Community Group. Finished Proposals. June 10, 2020.

url: https://github.com/WebAssembly/proposals/blob/master/

finished-proposals.md (visited on 06/10/2020).

[46] WebAssembly Community Group.Multi-value Extension. Feb. 17, 2020.

url: https : / / github . com / WebAssembly / multi - value / blob /

master/proposals/multi-value/Overview.md (visited on 05/22/2020).

[47] WebAssembly Community Group.Multi-value Proposal for WebAssembly.

May 4, 2020. url: https://github.com/WebAssembly/multi-value

(visited on 05/22/2020).

[48] WebAssembly Community Group. Mutable Global Proposal for Web-

Assembly. June 24, 2018. url: https://github.com/WebAssembly/

mutable-global (visited on 06/10/2020).

[49] WebAssembly Community Group. Non-trapping float-to-int Conver-

sion Proposal for WebAssembly. Aug. 27, 2019. url: https://github.

com/WebAssembly/nontrapping-float-to-int-conversions (vis-

ited on 05/11/2020).

[50] WebAssembly Community Group. Non-trapping float-to-int Conver-

sion Proposal for WebAssembly. Aug. 27, 2019. url: https://github.

com / WebAssembly / nontrapping - float - to - int - conversions /

50

https://github.com/WebAssembly/proposals/blob/master/finished-proposals.md
https://github.com/WebAssembly/proposals/blob/master/finished-proposals.md
https://github.com/WebAssembly/multi-value/blob/master/proposals/multi-value/Overview.md
https://github.com/WebAssembly/multi-value/blob/master/proposals/multi-value/Overview.md
https://github.com/WebAssembly/multi-value
https://github.com/WebAssembly/mutable-global
https://github.com/WebAssembly/mutable-global
https://github.com/WebAssembly/nontrapping-float-to-int-conversions
https://github.com/WebAssembly/nontrapping-float-to-int-conversions
https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md

blob/master/proposals/nontrapping-float-to-int-conversion/

Overview.md (visited on 05/11/2020).

[51] WebAssembly Community Group. Process, and meetings for subgroups.

Ed. by Deepti Gandluri. Apr. 27, 2020. url: https://github.com/

WebAssembly/meetings/issues/549 (visited on 06/12/2020).

[52] WebAssembly Community Group. Reference Types for WebAssembly.

Ed. by Andreas Rossberg. June 5, 2020. url: https : / / github .

com / WebAssembly / reference - types / blob / master / proposals /

reference-types/Overview.md (visited on 06/11/2020).

[53] WebAssembly Community Group. Release wg-1.0. Ed. by Andreas Ross-

berg. July 20, 2019. url: https://github.com/WebAssembly/spec/

releases/tag/wg-1.0 (visited on 05/29/2020).

[54] WebAssembly Community Group. Sign-extension operators proposal

for WebAssembly. Apr. 28, 2019. url: https://github.com/WebAssembly/

sign-extension-ops/blob/master/proposals/sign-extension-

ops/Overview.md (visited on 05/15/2020).

[55] WebAssembly Community Group. Sign Extension Operators Proposal

for WebAssembly. Jan. 17, 2020. url: https://github.com/WebAssembly/

sign-extension-ops (visited on 05/11/2020).

51

https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
https://github.com/WebAssembly/meetings/issues/549
https://github.com/WebAssembly/meetings/issues/549
https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md
https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md
https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md
https://github.com/WebAssembly/spec/releases/tag/wg-1.0
https://github.com/WebAssembly/spec/releases/tag/wg-1.0
https://github.com/WebAssembly/sign-extension-ops/blob/master/proposals/sign-extension-ops/Overview.md
https://github.com/WebAssembly/sign-extension-ops/blob/master/proposals/sign-extension-ops/Overview.md
https://github.com/WebAssembly/sign-extension-ops/blob/master/proposals/sign-extension-ops/Overview.md
https://github.com/WebAssembly/sign-extension-ops
https://github.com/WebAssembly/sign-extension-ops

[56] WebAssembly Community Group. Tail Call Proposal for WebAssembly.

Apr. 27, 2020. url: https://github.com/WebAssembly/tail-call

(visited on 05/11/2020).

[57] WebAssembly Community Group. Threading proposal for WebAssembly.

Ed. by Ben Smith. Apr. 17, 2020. url: https://github.com/WebAssembly/

threads/blob/master/proposals/threads/Overview.md (visited on

07/10/2020).

[58] WebAssembly Community Group. WebAssembly BigInt<->i64 conver-

sion in JS API. June 1, 2020. url: https://github.com/WebAssembly/

JS-BigInt-integration (visited on 06/10/2020).

[59] WebAssembly Community Group. WebAssembly Future Features. Apr.

2020. url: https://webassembly.org/docs/high-level-goals/

(visited on 04/12/2020).

[60] WebAssembly Community Group.WebAssembly High-Level Goals. Apr.

2020. url: https://webassembly.org/docs/high-level-goals/

(visited on 04/12/2020).

[61] WebAssembly Community Group.WebAssembly meetings. WebAssembly

meetings (VC or in-person), agendas, and notes. June 5, 2020. url:

https://github.com/WebAssembly/meetings (visited on 06/12/2020).

52

https://github.com/WebAssembly/tail-call
https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md
https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md
https://github.com/WebAssembly/JS-BigInt-integration
https://github.com/WebAssembly/JS-BigInt-integration
https://webassembly.org/docs/high-level-goals/
https://webassembly.org/docs/high-level-goals/
https://github.com/WebAssembly/meetings

[62] WebAssembly Community Group.WebAssembly Minimum Viable Prod-

uct. Apr. 2020. url: https://webassembly.org/docs/mvp/ (visited

on 04/12/2020).

[63] WebAssembly Community Group. WebAssembly Proposals. 2020. url:

https://github.com/webassembly/proposals (visited on 04/12/2020).

[64] WebAssembly Community Group. WebAssembly Specification. Ed. by

Andreas Rossberg. Version 1. Apr. 4, 2020. url: https://webassembly.

github.io/spec/core/_download/WebAssembly.pdf (visited on

04/05/2020).

[65] WebAssembly Community Group. WebAssembly W3C Process. Apr.

2020. url: https://github.com/WebAssembly/meetings/blob/

master/process/phases.md (visited on 04/12/2020).

[66] WebAssembly Debugging Subgroup.WebAssembly Debugging Subgroup.

Ed. by Derek Schuff. May 26, 2020. url: https : / / github . com /

WebAssembly/debugging (visited on 06/12/2020).

[67] WebAssembly Debugging Subgroup. WebAssembly System Interface.

Ed. by Derek Schuff. June 8, 2020. url: https : / / github . com /

WebAssembly/WASI (visited on 06/12/2020).

53

https://webassembly.org/docs/mvp/
https://github.com/webassembly/proposals
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://github.com/WebAssembly/meetings/blob/master/process/phases.md
https://github.com/WebAssembly/meetings/blob/master/process/phases.md
https://github.com/WebAssembly/debugging
https://github.com/WebAssembly/debugging
https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI

[68] WebAssembly Working Group. Meeting Notes for June 6 video call of

WebAssembly’s Working Group. Discussion on the status of the work-

ing draft. Ed. by Ben Smith. June 6, 2018. url: https://github.

com / WebAssembly / meetings / blob / master / main / 2018 / WG - 06 -

06.md#discussion-on-status-of-the-working-draft (visited on

06/11/2020).

[69] WebAssembly Working Group. Meeting Notes for March 11 video call

of WebAssembly’s Working Group. Ed. by Ben Smith. Mar. 11, 2020.

url: https://github.com/WebAssembly/meetings/blob/master/

main/2020/WG-03-11.md#meeting-notes (visited on 06/11/2020).

[70] Welcome to SpiderMonkey. url: https://mozilla-spidermonkey.

github.io/ (visited on 06/28/2020).

[71] Makarius Wenzel. The Isabelle/Isar Reference Manual. Apr. 15, 2020.

[72] What is Coq? The Coq Proof Assistant. url: https://coq.inria.

fr/about-coq (visited on 09/07/2019).

[73] Alon Zakai. History of WebAssembly. Chrome University 2019. Feb. 7,

2020. url: https://www.youtube.com/watch?v=6r0NKEQqkz0 (vis-

ited on 04/12/2020).

54

https://github.com/WebAssembly/meetings/blob/master/main/2018/WG-06-06.md#discussion-on-status-of-the-working-draft
https://github.com/WebAssembly/meetings/blob/master/main/2018/WG-06-06.md#discussion-on-status-of-the-working-draft
https://github.com/WebAssembly/meetings/blob/master/main/2018/WG-06-06.md#discussion-on-status-of-the-working-draft
https://github.com/WebAssembly/meetings/blob/master/main/2020/WG-03-11.md#meeting-notes
https://github.com/WebAssembly/meetings/blob/master/main/2020/WG-03-11.md#meeting-notes
https://mozilla-spidermonkey.github.io/
https://mozilla-spidermonkey.github.io/
https://coq.inria.fr/about-coq
https://coq.inria.fr/about-coq
https://www.youtube.com/watch?v=6r0NKEQqkz0

	Abstract
	Introduction
	WebAssembly
	Non-Web Embeddings
	Past Experiments
	Evolving WebAssembly

	Proof Mechanization
	Soundness
	Incremental Soundness
	Non-trapping Float-to-Int Conversions
	Sign Extension Operators
	Tail Call

	Related Work
	Future Work
	Conclusion
	Bibliography

